Section 2.8: Function Operations and Composition

Video 1

1) For $f(x)=2 x^{2}+3$ and $g(x)=4 x-5$, find the following.
a) $(f+g)(5)$
b) $(f-g)(-3)$
c) $(f \cdot g)(0)$
d) $\left(\frac{f}{g}\right)(8)$
2) For $f(x)=x^{2}-2 x+7$ and $g(x)=2 x+9$, find the following.
a) $(f+g)(x)$
b) $(f-g)(x)$
c) $(f \cdot g)(x)$
d) $\left(\frac{f}{g}\right)(x)$
e) Give the domains of the functions in parts a through d.

Video 2

The difference quotient for a function is similar to the formula for average rate of change. We use it a great deal in calculus.

$$
\frac{f(x+h)-f(x)}{h}
$$

To simplify this quotient:

- Evaluate $f(x+h)$.
- Subtract the original function from this. That gives you the numerator.
- Place the numerator over h, and simplify. Usually, you will be able to factor a common factor of h from the numerator.

3) Find the difference quotient for $f(x)=3 x^{2}-7 x-20$.
4) Find the difference quotient for $f(x)=9 x-16$.

Video 3

5) Let $f(x)=\sqrt{x+9}$ and $g(x)=\frac{6}{x}$. Find the following.
a) $(f \circ g)(-3)$
b) $(g \circ f)(7)$
6) Given that $f(x)=\sqrt{x-4}$ and $g(x)=3 x+7$. Find the following functions and state their domains.
a) $(f \circ g)(x)$
b) $(g \circ f)(x)$
7) Given that $f(x)=x^{2}+4 x+8$ and $g(x)=2 x-15$. Find the following functions and state their domains.
a) $(f \circ g)(x)$
b) $(g \circ f)(x)$
8) Given that $f(x)=\frac{6}{x-3}$ and $g(x)=\frac{10}{x}$. Find the following functions and state their domains.
a) $(f \circ g)(x)$
b) $(g \circ f)(x)$
9) Find two functions $f(x)$ and $g(x)$ that have the given composition.
a) $(f \circ g)(x)=2(3 x+5)^{2}-8(3 x+5)+13$
b) $(f \circ g)(x)=\frac{1}{x+3}+9$
